2 00 3 The Kähler Cone as Cosmic Censor

نویسنده

  • Thomas Mohaupt
چکیده

M-theory effects prevent five-dimensional domain-wall and black-hole solutions from developing curvature singularities. While so far this analysis was performed for particular models, we now present a model-independent proof that these solutions do not have naked singularities as long as the Kähler moduli take values inside the extended Kähler cone. As a by-product we obtain information on the regularity of the Kähler-cone metric at boundaries of the Kähler cone and derive relations between the geometry of moduli space and space-time. Submitted to: Class. Quantum Grav. PACS numbers: 04.20.Dw, 11.25.Yb, 04.65.+e, 11.27.+d, 04.70-s The Kähler Cone as Cosmic Censor 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Kähler Cone as Cosmic Censor

M-theory effects prevent five-dimensional domain-wall and black-hole solutions from developing curvature singularities. While so far this analysis was performed for particular models, we now present a model-independent proof that these solutions do not have naked singularities as long as the Kähler moduli take values inside the extended Kähler cone. As a by-product we obtain information on the ...

متن کامل

2 00 2 Note on a reformulation of the strong cosmic censor conjecture based on computability

In this letter we provide a reformulation of the strong cosmic censor conjecture taking into account recent results on Malament–Hogarth space-times. We claim that the strong version of the cosmic censor conjecture can be formulated by postulating that a physically reasonable space-time is either globally hyperbolic or possesses the Malament–Hogarth property. But it is well-known that a Malament...

متن کامل

A pr 2 00 9 LIMITS OF CALABI - YAU METRICS WHEN THE KÄHLER CLASS DEGENERATES

We study the behaviour of families of Ricci-flat Kähler metrics on a projective Calabi-Yau manifold when the Kähler classes degenerate to the boundary of the ample cone. We prove that if the limit class is big and nef the Ricci-flat metrics converge smoothly on compact sets outside a subvariety to a limit incomplete Ricci-flat metric. The limit can also be understood from algebraic geometry.

متن کامل

Conical Kähler–Einstein Metrics Revisited

In this paper we introduce the “interpolation–degeneration” strategy to study Kähler–Einstein metrics on a smooth Fano manifold with cone singularities along a smooth divisor that is proportional to the anti-canonical divisor. By “interpolation” we show the angles in (0, 2π ] that admit a conical Kähler–Einstein metric form a connected interval, and by “degeneration” we determine the boundary o...

متن کامل

The Bochner–flat Cone of a Cr Manifold

We construct a Kähler structure (which we call a generalised Kähler cone) on an open subset of the cone of a strongly pseudo-convex CR manifold endowed with a 1-parameter family of compatible Sasaki structures. We determine those generalised Kähler cones which are Bochner-flat and we study their local geometry. We prove that any Bochner-flat Kähler manifold of complex dimension bigger than two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003